Benoit Coulombe Lab

We Are Engaged in the Race for Antivirals




Our goal is to develop a library of small molecules and peptides that inhibit the function of enzymes and proteins that are essential for the growth of epidemic coronaviruses, to ultimately develop antiviral medications.

The genome of coronaviruses is made of RNA and encodes a number of proteins essential for viral replication and propagation. The biogenesis of viral protein complexes and structures, leading to infectious viral particles, proceeds according to an established scenario that requires involvement of host factors. Our strategy is aimed at developing new avenues to combat epidemic coronaviruses such as SARS-CoV-2 (COVID-19) by targeting essential aspects of their growth cycle. The development of our Coronavirus Inhibitor Library provides a set of molecules that target SARS-CoV-2, while at the same time supporting a rapid response in case of new emerging coronaviruses and related epidemic viruses. We combine our expertise in proteomics and biochemistry with that of our collaborators in medicinal chemistry, virology, biophysics and clinical sciences to develop this inhibitor arsenal. We believe that the most significant innovations come to life at the intersection of disciplines.

Interfering with entry of the virus in target cells

The SARS-CoV-2 spike (S) glycoprotein recognizes and binds the ACE2 receptor at the surface of target cells to initiate the infection process and deliver viral materials in cells. We use various approaches including phage display to discover peptides and proteins that block this protein-protein interaction in order to impair viral entry and interfere with infection.

Interfering with genome replication to stop viral growth

A SARS-CoV-2 RNA dependent RNA polymerase (RdRp) is required to copy the viral genome and trigger the replication process in infected cells. The RdRp is a privileged target for drug discovery because its chemical inhibition can interfere with viral growth. Remdesivir, a nucleotide analogue approved by both the American FDA and Health Canada to treat severe forms of COVID-19, provides a proof of concept that SARS-CoV-2 RdRp is a valuable target for antiviral development. We develop and use screening technologies to identify chemical compounds and peptides that can target the RdRp machinery. SARS-CoV-2 genome replication and transcription involve up to five viral proteins in addition to RdRp. Novel inhibitors not only serve to develop medications to combat epidemics, but also to better understand mechanisms of viral replication. Advanced biochemical studies are necessary to understand the complexity and dynamics of enzyme mechanisms, therefore providing an essential complement to structural data. This is particularly important when structural data has been obtained on partial complexes that may not have adopted a fully functional conformation.

Interfering with virus biogenesis?

We have been astonished to find out that subunits of the PAQosome associate with SARS-CoV-2 proteins in human cells (Krogan dataset), suggesting a role for the PAQosome in virus biogenesis. The "Particle for Arrangement of Quaternary Structure" (PAQosome) is a 12-subunit molecular chaperone required for assembly of several human complexes, including the nuclear RNA polymerase I, II and III, some sno and snRNPs, the ribosome, PIKKs and others. Validation studies are needed to confirm a role for the PAQosome in SARS-CoV-2 biogenesis and evaluate if this complex is a relevant target in the drug discovery process for COVID-19.


Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme.

Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B.

Mol Cell. 2007 Jul 20;27(2):262-74.  (404 citations)

Discovery of the 7SK methylphosphate capping enzyme and a series of chaperone-like proteins that associate with RNA polymerase to regulate its biogenesis, some being components of a chaperone complex later named “Particle for Arrangement of Quaternary structure” (PAQosome)

DNA Bending and Wrapping Around RNA Polymerase: A "Revolutionary" Model Describing Transcriptional Mechanisms.

Coulombe B, Burton ZF.

Microbiol Mol Biol Rev. 1999 Jun;63(2):457-78.  (153 citations)

A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact With Molecular Chaperones to Regulate Their Activity.

Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B.

PLoS Genet. 2013;9(1):e1003210.  (128 citations)

Wrapping of Promoter DNA Around the RNA Polymerase II Initiation Complex Induced by TFIIF.

Robert F, Douziech M, Forget D, Egly JM, Greenblatt J, Burton ZF, Coulombe B.

Mol Cell. 1998 Sep;2(3):341-51.  (125 citations)

Mechanism of Promoter Melting by the Xeroderma Pigmentosum Complementation Group B Helicase of Transcription Factor IIH Revealed by protein-DNA Photo-Cross-Linking.

Douziech M, Coin F, Chipoulet JM, Arai Y, Ohkuma Y, Egly JM, Coulombe B.

Mol Cell Biol. 2000 Nov;20(21):8168-77.  (89 citations)

High-resolution Mapping of the Protein Interaction Network for the Human Transcription Machinery and Affinity Purification of RNA Polymerase II-associated Complexes.

Cloutier P, Al-Khoury R, Lavallée-Adam M, Faubert D, Jiang H, Poitras C, Bouchard A, Forget D, Blanchette M, Coulombe B.

Methods. 2009 Aug;48(4):381-6.  (83 citations)

Composition of the R2TP/PFDL co-chaperone complex, later renamed “Particle for Arrangement of Quaternary structure” (PAQosome)

Structural Perspective on Mutations Affecting the Function of Multisubunit RNA Polymerases.

Trinh V, Langelier MF, Archambault J, Coulombe B.

Microbiol Mol Biol Rev. 2006 Mar;70(1):12-36.  (83 citations)

The Protein Interaction Network of the Human Transcription Machinery Reveals a Role for the Conserved GTPase RPAP4/GPN1 and Microtubule Assembly in Nuclear Import and Biogenesis of RNA Polymerase II.

Forget D, Lacombe AA, Cloutier P, Al-Khoury R, Bouchard A, Lavallée-Adam M, Faubert D, Jeronimo C, Blanchette M, Coulombe B.

Mol Cell Proteomics. 2010 Dec;9(12):2827-39.  (76 citations)

Photo-cross-linking of a Purified Preinitiation Complex Reveals Central Roles for the RNA Polymerase II Mobile Clamp and TFIIE in Initiation Mechanisms.

Forget D, Langelier MF, Thérien C, Trinh V, Coulombe B.

Mol Cell Biol. 2004 Feb;24(3):1122-31.  (73 citations)

Recessive Mutations in POLR1C Cause a Leukodystrophy by Impairing Biogenesis of RNA Polymerase III.

Thiffault I, Wolf NI, Forget D, Guerrero K, Tran LT, Choquet K, Lavallée-Adam M, Poitras C, Brais B, Yoon G, Sztriha L, Webster RI, Timmann D, van de Warrenburg BP, Seeger J, Zimmermann A, Máté A, Goizet C, Fung E, van der Knaap MS, Fribourg S, Vanderver A, Simons C, Taft RJ, Yates JR 3rd, *Coulombe B, *Bernard G.

Nat Commun. 2015 Jul 7;6:7623. *Co-senior authors  (71 citations)



  • Recombinant protein purification (bacteria & human cells) and characterization

  • Assays for various steps of the transcription reaction

  • Protein-nucleic acid photo-crosslinking

  • Protein Affinity Purification coupled to Mass Spectrometry (AP-MS)

  • Proximity-Dependent Protein Identification (BioID)

  • Tandem Mass Tag (TMT)-Based Discovery Proteomics

  • Protein Affinity Capture coupled to quantitative Mass Spectrometry (PAC-qMS)

  • Phage Display Peptide/Protein Library Screening (PhD)

  • Medium-throughput small molecule screening



Dr. Benoit Coulombe
Dr. Benoit Coulombe
Dr. Marie-Soleil Gauthier
Dr. Marie-Soleil Gauthier
Senior Associate Researcher
Dr. Maxime Pinard
Associate Researcher
Dr. Esen Sokullu
Postdoctoral Fellow
Dr. Samaneh Dastpeyman
Postdoctoral Fellow
Christian Poitras
Christian Poitras
Systems Analyst
Alexa Derksen
Alexa Derksen
Master Degree Student (Dr. G. Bernard)
Golden Marble
Vijaya Madhoo
Administrative Assistant
Diane Forget
Diane Forget
Honorary Lab Member

2020-06-26 :

Diane Forget prend sa retraite après 27 ans de service dévoué pour le laboratoire. Elle a eu

une contribution exceptionnelle pour nos publications, la formation de personnel, l'administration des fonds de recherche et la planification des espaces de laboratoire. Avec toute notre reconnaissance, merci et bonne continuation.




LinkedIn Logo
Twitter Logo

L’Institut de recherches cliniques de Montréal n’est pas responsable du contenu de ce site Web.

The Montreal Clinical Research Institute is not responsible for the content of this website.

© 2020 by Benoit Coulombe Lab